最原始的硒产品是哪种(矿物质硒是有机硒吗)
(五)DR系统设备的某些技术实质
一、 某厂商的所谓?能量减影?
1、?能量减影?的本质是采用两种不同的曝光条件对同一物质进行分次曝光,分别得到较低密度和较高密度物质的单独影像。目前主要应用在胸部,试图克服平片上肋骨对部分肺组织的遮挡这个缺陷。
2、能量减影的最终目的,是希望看到被肋骨做遮盖的病变。那么,对什么样的患者这样做呢?由谁来做对患者进行两次曝光的决定呢?一个患者从临床医生办公室拿到检查申请单,到放射科拍片,涉及到的三个角色(患者、临床医师、技师)都没有这样的预见及决定能力,也没有这样的权力。
3、实际上,在常规平片工作流程最后的诊断环节,诊断医生面临三种可能:第一,肋骨后有软组织病变,但看不见,医生此时没理由让这样的患者进行第二次曝光;第二,肋骨后的确没有软组织病变,不需要进行第二次曝光;第三,肋骨后的软组织病变范围超出了肋骨的宽度,在肺组织的对比下可以看见,这时,就有了必须进一步进行详细检查的指征,但无论从定性、定量、定位还是技术实施的可能性(该技术要求在极短时间内进行两次曝光)看,显然已经超出了DR能力的范围,必须用CT及其他设备进行。
4、这个技术的提出,是受启发于临床上某个肺部的病变已经被CT证实为肋骨遮挡,平片没发现。因此技术提出者认为如果去掉肋骨,病变就能够显示出来了。这是一种典型的回顾性思维,只是冲着解决问题而去,却没注意问题发生的实际环境是否允许这样的解决方案。
二、某厂商的所谓?组织均衡?
1、?组织均衡?是使密度差别较大的组织在同一影像上显示;本质上就是分别在相对狭窄的灰度范围内分别观察低密度和高密度组织,在PACS诊断工作站上可以用调整灰度和对比度实现。这个所谓?先进技术?同前者一样同属文字游戏而几乎没有实际应用价值。
2、对使用诊断工作站的大夫来说,在显示器上调整灰度和对比度观察不同密度的组织是很自然的事情。
3、对没有诊断工作站的医院,由于他们面对的影像仍然是胶片,这个技术或许有用。但这个调整需要一定的时间,即使一个普通地市级医院,技术员的工作强度已经很大,根本没时间做这样的事情,其他流量更大的大型医院,实施这样的费时的后处理,可能性几乎没有。
4、总之,前两个所谓?新技术、新应用?只是迷惑人的文字游戏,其实质是突出自己与其他产品的区别,引起用户的注意。DR的数字影像只是为平片提供了进行后处理的可能;但数字平片后处理功能的开发,必须建立在一个可行及必要的基础上。(在现有医学影像设备上开展新技术都必须与能否最终解决临床实际问题相结合考虑,严格讲,在其公开宣传以前,必须有相关的前瞻性临床研究的证据支持。用户必须注意这些技术的含金量。)事实上,在患者到放射科进行影像检查的整个流程中,DR提供的平片只是一个初步筛查的工具,提供的影像是组织重叠像,其最重要的功能仍然和传统平片一样。如果病变密度与正常组织差别虽然小但仍然尚能在DR片子上用肉眼分辨出来的程度,最终诊断仍然需要进一步进行CT和其他检查。数字平片目前不能,以后也不能解决临床上对大多数病变定量、定性、定位的要求。DR的真正使命,是在保证影像质量的前提下通过对平片工作流程的改变得到的革命性的高效率,并不是而且也不可能取代CT或其他诊疗设备。
三、非直接数字放射摄影(IDR)和直接数字摄影(DDR)之分
1、非直接数字放射摄影(Indirect Digital Radiography,简称IDR),是一种硅半导体间接采集 X-粒子技术的数字摄影技术,采用两步数字转换过程,X-光粒子先变成可见光然后用光电管探测到转换为电信号。它是由Gd2O2S:Tb或Csl构成X射线的转换屏幕,或称为闪烁体,X射线穿过反射层到达闪烁体后,激发出可见光子;可见光传递下面光电二极管,光电二极管触发场效应三极管产生输出信号。这些转换过程中在物理上有或多或少的能量损失,但对X线吸收效率较高。
2、直接数字放射摄影系统(Direct Digital Radiography,简称DDR)是一种所谓直接X-粒子技术的数字摄影技术,X-光粒子在硒涂料层变成电信号被探测和转换;不产生可见光,而只是电子的传导,可避免散射线的产生,理论上没有光电转换的能量损失。但由于硒层吸收X线效率较差,成像时间长,实际转换效能并不好。
3、不论是什么技术类型的平板都是为了获得尽可能真实的诊断图像;就目前可行的生产工艺水平,非晶硅间接数字转化技术是生产平板的最佳选择,这也是PHILIPS、SIEMENS、GE等大型医疗设备厂商采用非晶硅平板的原因;尤其是Trixell平板的独特工艺,使其成像质量远高于非晶硒板,也高于其他非晶硅板。(Trixell平板CsI闪烁体层由于晶体结构的关系,在信号转换时也有少许光散射的发生,能量有少许损失,但对最终图像质量影像不大;其较高的量子检测效能(DQE)可在较低剂量曝光情况下获得高质量的图像;由于成像快,可用于透视及时间减影等领域,大大增加了X线检查的使用范围。)
4、放射影像的质量是由许多因素共同作用形成的,仅仅突出在单个转换过程中能量损失多少是无法保证高质量诊疗图像的,还得看实际转换效率和最终成像质量如何,不能光看某技术的单项理论值。
5、几乎所有世界级的专家学者都认可非晶硅板在成像质量稳定性上好于非晶硒板。
四、非晶硒平板所谓?直接能量转换?而没有能量损失
1、?使用光导材料非晶硒的平板不产生可见光,而只是电子的传导,没有散、折射线产生的能量损失,对提高图像清晰度有好处。?
2、理论上说,非晶硒平板没有光电转化过程中的能量损失,但并不代表其转化效果出色,更不代表其成像质量高;事实上低放射剂量时其成像质量是难以满足诊疗需求的;也就是说要想获得高质量的影像非晶硒板必需很高的放射剂量;其高剂量照射的成像质量才勉强与以Trixell平板为代表的非晶硅板在低剂量时的成像质量相当。这是与降低患者和工作人员辐射伤害的环保要求背道而驰的。
3、以硒作为光电导体可以直接将光信号转换为电信号,在理论上确实没有可见光转换为电子信号这一过程,避免了散射的发生;但是硒层对入射的X线吸收率很低会丢失了很多原始信息;所谓?直接转换?的过程速度也很慢,不仅影响工作效率而且信息丢失也很严重;因此在低剂量条件下图像质量无法保证,必须用很大的放射剂量才能得到有效诊断图像。通过分析其工作过程我们得知:所谓?非晶硒是直接转换没有能量损失?的说法纯属断章取义,只是避免了非晶硅类平板光电转换这一过程的能量损失,但绝对不是没有能量损失;相反由于其硒层对X线吸收率低、X光粒子转为电子的速度慢及最终成像速度慢而导致大量信息丢失,其影像质量比非晶硅平板(尤其是Trixell平板)是有很大差距的,不得已只能靠增加放射剂量来弥补其信息丢失过多的缺陷。另一个致命的缺点是硒层对于温度特别敏感,稳定可用性极差,使用条件受到很大限制,而且易坏易损,返修率很高。
4、非晶硒型平板第一个缺陷是需要比其他平板高得多的放射剂量才能得到符合诊断要求的影像质量;第二个缺陷是其硒层对温度非常敏感,稳定性差,使用条件受到很大限制,而且由于其对温度的极度敏感导致毁损率奇高。
5、总体看非晶硒平板技术是目前还很不成熟,具体表现为需要放射剂量较高、稳定性很差、返修率奇高。其代表厂商Hologic平板碰到了不可逾越的技术难题,已经退出DR系统设备市场。
继续阅读
- 暂无推荐